If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-96=0
a = 16; b = 0; c = -96;
Δ = b2-4ac
Δ = 02-4·16·(-96)
Δ = 6144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6144}=\sqrt{1024*6}=\sqrt{1024}*\sqrt{6}=32\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{6}}{2*16}=\frac{0-32\sqrt{6}}{32} =-\frac{32\sqrt{6}}{32} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{6}}{2*16}=\frac{0+32\sqrt{6}}{32} =\frac{32\sqrt{6}}{32} =\sqrt{6} $
| (5x+6)(x–1)–(2x2–5x+3)=0 | | 7.75/9.75=15/x | | 13k-10k+3k+3k+8k=8 | | -13=3y+2= | | 3x-3x+3x-x=10 | | F=13(s−65)+65 | | 4q-2q+q+3q-2q=8 | | 2z–13-5=2z+9≤9 | | x^2+7x-12.25=0 | | 2(x+2)=8x+1-6x+3 | | 10^x=19/37 | | 28=3d-7d | | 8x-36=-26 | | 11a-7a=20 | | 3m^2-1m-6=0 | | (25/9)^2x=3/5 | | -(x-7)+53=2(x=9) | | (X-1)-5(x-2)-(2x+3)-(5x+2)(x-1)=0 | | 83=6x-25 | | 9-x/3=-3 | | n/15=15-n/10 | | 3^(x+2)=81 | | 9q+2-13=0 | | 3/4m+2=-5 | | 2k=5.4k-9 | | -3z^2-2z=0 | | 63x+49-14x+2x-4=36 | | (X+3)(x-1)-(x-1)(x-4)+(x+2)(x+4)-(x+1)(x-2)=17 | | -19-3x=-7 | | 10=-x/7+8 | | n/14=15-n/10 | | 10x+22=5x+7 |